 |


|
 |
Item Details
Title:
|
A REFORMULATION-LINEARIZATION TECHNIQUE FOR SOLVING DISCRETE AND CONTINUOUS NONCONVEX PROBLEMS
|
By: |
Hanif D. Sherali, Warren P. Adams |
Format: |
Hardback |

List price:
|
£199.99 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0792354877 |
ISBN 13: |
9780792354871 |
Publisher: |
SPRINGER |
Pub. date: |
31 December, 1998 |
Edition: |
1999 ed. |
Series: |
Nonconvex Optimization and Its Applications 31 |
Pages: |
518 |
Description: |
Addresses a method for generating tight linear or convex programming relaxations for discrete and continuous nonconvex programming problems. This book is intended for researchers and practitioners who work in the area of discrete or continuous nonlinear, nonconvex optimization problems. |
Synopsis: |
This book deals with the theory and applications of the Reformulation- Linearization/Convexification Technique (RL T) for solving nonconvex optimization problems. A unified treatment of discrete and continuous nonconvex programming problems is presented using this approach. In essence, the bridge between these two types of nonconvexities is made via a polynomial representation of discrete constraints. For example, the binariness on a 0-1 variable x . can be equivalently J expressed as the polynomial constraint x . (1-x . ) = 0. The motivation for this book is J J the role of tight linear/convex programming representations or relaxations in solving such discrete and continuous nonconvex programming problems. The principal thrust is to commence with a model that affords a useful representation and structure, and then to further strengthen this representation through automatic reformulation and constraint generation techniques. As mentioned above, the focal point of this book is the development and application of RL T for use as an automatic reformulation procedure, and also, to generate strong valid inequalities. The RLT operates in two phases. In the Reformulation Phase, certain types of additional implied polynomial constraints, that include the aforementioned constraints in the case of binary variables, are appended to the problem. The resulting problem is subsequently linearized, except that certain convex constraints are sometimes retained in XV particular special cases, in the Linearization/Convexijication Phase. This is done via the definition of suitable new variables to replace each distinct variable-product term. The higher dimensional representation yields a linear (or convex) programming relaxation. |
Illustrations: |
XXIV, 518 p. |
Publication: |
Netherlands |
Imprint: |
Springer |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.

|

|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.

|

|
|
 |