 |


|
 |
Item Details
Title:
|
THE SIEGEL MODULAR VARIETY OF DEGREE TWO AND LEVEL FOUR/COHOMOLOGY OF THE SIEGEL MODULAR GROUP OF DEGREE TWO AND LEVEL FOUR
|
By: |
Ronnie Lee, etc., Steven H. Weintraub |
Format: |
Paperback |

List price:
|
£46.50 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0821806203 |
ISBN 13: |
9780821806203 |
Publisher: |
AMERICAN MATHEMATICAL SOCIETY |
Pub. date: |
1 January, 1998 |
Series: |
Memoirs of the American Mathematical Society No. 631 |
Pages: |
75 |
Description: |
Computes the cohomology of the principal congruence subgroup $\Gamma_2(4) \subset S{_p4} (\mathbb Z)$ consisting of matrices $\gamma \equiv \mathbf 1$ mod 4. |
Synopsis: |
The Siegel Modular Variety of Degree Two and Level Four is by Ronnie Lee and Steven H. Weintraub: Let $\mathbf M_n$ denote the quotient of the degree two Siegel space by the principal congruence subgroup of level $n$ of $Sp_4(\mathbb Z)$. $\mathbfM_n$ is the moduli space of principally polarized abelian surfaces with a level $n$ structure and has a compactification $\mathbfM^*_n$ first constructed by Igusa. $\mathbfM^*_n$ is an almost non-singular (non-singular for $n> 1$) complex three-dimensional projective variety (of general type, for $n> 3$). The authors analyze the Hodge structure of $\mathbfM^*_4$, completely determining the Hodge numbers $h^{p,q} = \dim H^{p,q}(\mathbfM^*_4)$. Doing so relies on the understanding of $\mathbfM^*_2$ and exploitation of the regular branched covering $\mathbfM^*_4 \rightarrow \mathbfM^*_2$.""Cohomology of the Siegel Modular Group of Degree Two and Level Four"" is by J. William Hoffman and Steven H. Weintraub. The authors compute the cohomology of the principal congruence subgroup $\Gamma_2(4) \subset S{_p4} (\mathbb Z)$ consisting of matrices $\gamma \equiv \mathbf 1$ mod 4.This is done by computing the cohomology of the moduli space $\mathbfM_4$. The mixed Hodge structure on this cohomology is determined, as well as the intersection cohomology of the Satake compactification of $\mathbfM_4$. |
Publication: |
US |
Imprint: |
American Mathematical Society |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
No Cheese, Please!
A fun picture book for children with food allergies - full of friendship and super-cute characters!Little Mo the mouse is having a birthday party.

|
My Brother Is a Superhero
Luke is massively annoyed about this, but when Zack is kidnapped by his arch-nemesis, Luke and his friends have only five days to find him and save the world...

|

|

|
|
 |