 |


|
 |
Item Details
Title:
|
THE BEILINSON COMPLEX AND CANONICAL RINGS OF IRREGULAR SURFACES
|
By: |
Alberto Canonaco |
Format: |
Paperback |

List price:
|
£59.00 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0821841939 |
ISBN 13: |
9780821841938 |
Publisher: |
AMERICAN MATHEMATICAL SOCIETY |
Pub. date: |
15 August, 2006 |
Series: |
Memoirs of the American Mathematical Society No. 183 |
Pages: |
99 |
Description: |
An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P}^n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P}^n$ in terms of the vector bundles $\Omega_{\mathbb{P}^n}^j(j)$ for $0\le j\le n$. This title extends this theorem to weighted projective spaces. |
Synopsis: |
An important theorem by Beilinson describes the bounded derived category of coherent sheaves on $\mathbb{P}^n$, yielding in particular a resolution of every coherent sheaf on $\mathbb{P}^n$ in terms of the vector bundles $\Omega_{\mathbb{P}^n}^j(j)$ for $0\le j\le n$. This theorem is here extended to weighted projective spaces. To this purpose we consider, instead of the usual category of coherent sheaves on $\mathbb{P}({\rm w})$ (the weighted projective space of weights $\rm w=({\rm w}_0,\dots,{\rm w}_n)$), a suitable category of graded coherent sheaves (the two categories are equivalent if and only if ${\rm w}_0=\cdots={\rm w}_n=1$, i.e. $\mathbb{P}({\rm w})= \mathbb{P}^n$), obtained by endowing $mathbb{P}({\rm w})$ with a natural graded structure sheaf. The resulting graded ringed space $\overline{\mathbb{P}}({\rm w})$ is an example of graded scheme (in chapter 1 graded schemes are defined and studied in some greater generality than is needed in the rest of the work).Then in chapter 2 we prove for graded coherent sheaves on $\overline{\mathbb{P}}({\rm w})$ a result which is very similar to Beilinson's theorem on $\mathbb{P}^n$, with the main difference that the resolution involves, besides $\Omega_{\overline{\mathbb{P}}({\rm w})}^j(j)$ for $0\le j\le n$, also $\mathcal{O}_{\overline{\mathbb{P}}({\rm w})}(1)$ for $n-\sum_{i=0}^n{\rm w}_i\1\0$.This weighted version of Beilinson's theorem is then applied in chapter 3 to prove a structure theorem for good birational weighted canonical projections of surfaces of general type (i.e., for morphisms, which are birational onto the image, from a minimal surface of general type $S$ into a $3$-dimensional $\mathbb{P}({\rm w})$, induced by $4$ sections $\sigma_i\in H\0(S, \mathcal{O}_S({\rm w}_iK_S))$).This is a generalization of a theorem by Catanese and Schreyer (who treated the case of projections into $\mathbb{P}^3$), and is mainly interesting for irregular surfaces, since in the regular case a similar but simpler result (due to Catanese) was already known. The theorem essentially states that giving a good birational weighted canonical projection is equivalent to giving a symmetric morphism of (graded) vector bundles on $\overline{\mathbb{P}}({\rm w})$, satisfying some suitable conditions. Such a morphism is then explicitly determined in chapter 4 for a family of surfaces with numerical invariants $p_g=q=2$, $K^2=4$, projected into $\mathbb{P}(1,1,2,3)$. |
Publication: |
US |
Imprint: |
American Mathematical Society |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
No Cheese, Please!
A fun picture book for children with food allergies - full of friendship and super-cute characters!Little Mo the mouse is having a birthday party.

|
My Brother Is a Superhero
Luke is massively annoyed about this, but when Zack is kidnapped by his arch-nemesis, Luke and his friends have only five days to find him and save the world...

|

|

|
|
 |