 |


|
 |
Item Details
Title:
|
MANIFOLD LEARNING THEORY AND APPLICATIONS
|
By: |
Yunqian Ma (Editor), Yun Fu (Editor) |
Format: |
Hardback |

List price:
|
£145.00 |
Our price: |
£130.50 |
Discount: |
|
You save:
|
£14.50 |
|
|
|
|
ISBN 10: |
1439871094 |
ISBN 13: |
9781439871096 |
Availability: |
Usually dispatched within 1-3 weeks.
Delivery
rates
|
Stock: |
Currently 0 available |
Publisher: |
TAYLOR & FRANCIS INC |
Pub. date: |
20 December, 2011 |
Pages: |
314 |
Description: |
Incorporating state-of-the-art techniques, this book provides complete theoretical and practical treatment of manifold learning. An excellent entry point for readers new to the subject, it supplies a high-level introductory view of the topic as well as in-depth discussion of the key technical details. |
Synopsis: |
Trained to extract actionable information from large volumes of high-dimensional data, engineers and scientists often have trouble isolating meaningful low-dimensional structures hidden in their high-dimensional observations. Manifold learning, a groundbreaking technique designed to tackle these issues of dimensionality reduction, finds widespread application in machine learning, neural networks, pattern recognition, image processing, and computer vision. Filling a void in the literature, Manifold Learning Theory and Applications incorporates state-of-the-art techniques in manifold learning with a solid theoretical and practical treatment of the subject. Comprehensive in its coverage, this pioneering work explores this novel modality from algorithm creation to successful implementation-offering examples of applications in medical, biometrics, multimedia, and computer vision. Emphasizing implementation, it highlights the various permutations of manifold learning in industry including manifold optimization, large scale manifold learning, semidefinite programming for embedding, manifold models for signal acquisition, compression and processing, and multi scale manifold.Beginning with an introduction to manifold learning theories and applications, the book includes discussions on the relevance to nonlinear dimensionality reduction, clustering, graph-based subspace learning, spectral learning and embedding, extensions, and multi-manifold modeling. It synergizes cross-domain knowledge for interdisciplinary instructions, offers a rich set of specialized topics contributed by expert professionals and researchers from a variety of fields. Finally, the book discusses specific algorithms and methodologies using case studies to apply manifold learning for real-world problems. |
Illustrations: |
128 black & white illustrations, 17 black & white tables |
Publication: |
US |
Imprint: |
CRC Press Inc |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.

|

|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.

|

|
|
 |