 |


|
 |
Item Details
Title:
|
A STUDY IN DERIVED ALGEBRAIC GEOMETRY
VOLUME I: CORRESPONDENCES AND DUALITY |
By: |
Dennis Gaitsgory, Nick Rozenblyum |
Format: |
Hardback |

List price:
|
£115.00 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
1470435691 |
ISBN 13: |
9781470435691 |
Publisher: |
AMERICAN MATHEMATICAL SOCIETY |
Pub. date: |
30 July, 2017 |
Series: |
Mathematical Surveys and Monographs |
Pages: |
553 |
Description: |
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. |
Synopsis: |
Derived algebraic geometry is a far-reaching generalization of algebraic geometry. It has found numerous applications in various parts of mathematics, most prominently in representation theory. This volume develops the theory of ind-coherent sheaves in the context of derived algebraic geometry. Ind-coherent sheaves are a ``renormalization'' of quasi-coherent sheaves and provide a natural setting for Grothendieck-Serre duality as well as geometric incarnations of numerous categories of interest in representation theory.This volume consists of three parts and an appendix. The first part is a survey of homotopical algebra in the setting of $\infty$-categories and the basics of derived algebraic geometry. The second part builds the theory of ind-coherent sheaves as a functor out of the category of correspondences and studies the relationship between ind-coherent and quasi-coherent sheaves. The third part sets up the general machinery of the $\mathrm{(}\infty, 2\mathrm{)}$-category of correspondences needed for the second part. The category of correspondences, via the theory developed in the third part, provides a general framework for Grothendieck's six-functor formalism. The appendix provides the necessary background on $\mathrm{(}\infty, 2\mathrm{)}$-categories needed for the third part. |
Publication: |
US |
Imprint: |
American Mathematical Society |
Returns: |
Returnable |
|
|
|
 |


|

|

|

|

|
No Cheese, Please!
A fun picture book for children with food allergies - full of friendship and super-cute characters!Little Mo the mouse is having a birthday party.

|
My Brother Is a Superhero
Luke is massively annoyed about this, but when Zack is kidnapped by his arch-nemesis, Luke and his friends have only five days to find him and save the world...

|

|

|
|
 |