|
|
|
Item Details
Title:
|
NORMAL MODES AND LOCALIZATION IN NONLINEAR SYSTEMS
|
By: |
Alexander F. Vakakis (Editor) |
Format: |
Hardback |
List price:
|
£119.99 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
0792370104 |
ISBN 13: |
9780792370109 |
Publisher: |
KLUWER ACADEMIC PUBLISHERS |
Pub. date: |
31 January, 2002 |
Edition: |
2001 ed. |
Pages: |
294 |
Description: |
Contains a collection of original papers on nonlinear normal modes and localization in dynamical systems from leading experts in the field. This book includes analytical and computational techniques for studying normal modes and localization phenomena in nonlinear discrete and continuous oscillators. |
Synopsis: |
The nonlinear normal modes of a parametrically excited cantilever beam are constructed by directly applying the method of multiple scales to the governing integral-partial differential equation and associated boundary conditions. The effect of the inertia and curvature nonlin- earities and the parametric excitation on the spatial distribution of the deflection is examined. The results are compared with those obtained by using a single-mode discretization. In the absence of linear viscous and quadratic damping, it is shown that there are nonlinear normal modes, as defined by Rosenberg, even in the presence of a principal parametric excitation. Furthermore, the nonlinear mode shape obtained with the direct approach is compared with that obtained with the discretization approach for some values of the excitation frequency. In the single-mode discretization, the spatial distribution of the deflection is assumed a priori to be given by the linear mode shape n, which is parametrically excited, as Equation (41). Thus, the mode shape is not influenced by the nonlinear curvature and nonlinear damping.On the other hand, in the direct approach, the mode shape is not assumed a priori; the nonlinear effects modify the linear mode shape n. Therefore, in the case of large-amplitude oscillations, the single-mode discretization may yield inaccurate mode shapes. References 1. Vakakis, A. F., Manevitch, L. I., Mikhlin, Y. v., Pilipchuk, V. N., and Zevin A. A., Nonnal Modes and Localization in Nonlinear Systems, Wiley, New York, 1996. |
Illustrations: |
biography |
Publication: |
US |
Imprint: |
Kluwer Academic Publishers |
Returns: |
Returnable |
|
|
|
|
|
|
|
|
|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.
|
|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.
|
|
|
|