Synopsis: |
Thismonographdealswiththeexistenceofperiodicmotionsof Lagrangiansystemswith ndegreesoffreedom ij + V'(q) =0, where Visasingularpotential.Aprototypeofsuchaproblem, evenifitisnottheonlyphysicallyinterestingone,istheKepler problem .. q 0 q+yqr= . This,jointlywiththemoregeneralN-bodyproblem,hasalways beentheobjectofagreatdealofresearch.Mostofthoseresults arebasedonperturbationmethods,andmakeuseofthespecific featuresoftheKeplerpotential. OurapproachismoreonthelinesofNonlinearFunctional Analysis:ourmainpurposeistogiveafunctionalframefor systemswithsingularpotentials,includingtheKeplerandthe N-bodyproblemasparticularcases.PreciselyweuseCritical PointTheorytoobtainexistenceresults,qualitativeinnature, whichholdtrueforbroadclassesofpotentials.Thishighlights thatthevariationalmethods,whichhavebeenemployedtoob- tainimportantadvancesinthestudyofregularHamiltonian systems,canbesuccessfallyusedtohandlesingularpotentials aswell. Theresearchonthistopicisstillinevolution,andtherefore theresultswewillpresentarenottobeintendedasthefinal ones. Indeedamajorpurposeofourdiscussionistopresent methodsandtoolswhichhavebeenusedinstudyingsuchprob- lems.Vlll PREFACE Partofthematerialofthisvolumehasbeenpresentedina seriesoflecturesgivenbytheauthorsatSISSA,Trieste,whom wewouldliketothankfortheirhospitalityandsupport. We wishalsotothankUgoBessi,PaoloCaldiroli,FabioGiannoni, LouisJeanjean,LorenzoPisani,EnricoSerra,KazunakaTanaka, EnzoVitillaroforhelpfulsuggestions. May26,1993 Notation n 1.For x, yE IR , x. ydenotestheEuclideanScalarproduct, and IxltheEuclideannorm. 2. meas(A)denotestheLebesguemeasureofthesubset Aof n IR * 3.Wedenoteby ST =[0,T]/{a,T}theunitarycirclepara- metrizedby t E[0,T].Wewillalsowrite SI= ST=I. n 1 n 4.Wewillwrite sn = {xE IR + : Ixl =I}andn = IR \{O}. n 5.Wedenoteby LP([O,T], IR ),1~ p~+00,theLebesgue spaces,equippedwiththestandardnorm lIulip. l n l n 6. H (ST, IR )denotestheSobolevspaceof u E H ,2(0, T; IR ) suchthat u(O) = u(T).Thenormin HIwillbedenoted by lIull2 = lIull~ + lIull~* 7.Wedenoteby(*1*)and11*11respectivelythescalarproduct andthenormoftheHilbertspace E. 8.For uE E, EHilbertorBanachspace,wedenotetheball ofcenter uandradiusrby B(u,r) = {vE E: lIu- vii~ r}.Wewillalsowrite B = B(O, r). r 1 1 9.WesetA (n) = {uE H (St,n)}. k 10.For VE C (1Rxil,IR)wedenoteby V'(t, x)thegradient of Vwithrespectto x. l 11.Given f E C (M,IR), MHilbertmanifold,welet r = {uEM: f(u) ~ a}, f-l(a,b) = {uE E : a~ f(u) ~ b}.x NOTATION 12.Given f E C1(M,JR), MHilbertmanifold,wewilldenote by Zthesetofcriticalpointsof fon Mandby Zctheset Z U f-l(c, c). 13.Givenasequence UnE E, EHilbertspace,by Un ---" Uwe willmeanthatthesequence Unconvergesweaklyto u. 14.With GBP(E)wewilldenotethesetoflinearandcontinuous operatorson E. 15.With Ck"(A,JR)wewilldenotethesetoffunctions ffrom AtoJR, ktimesdifferentiablewhosek-derivativeisHolder continuousofexponent0:. Main Assumptions Wecollecthere,forthereader'sconvenience,themainassump- tionsonthepotential Vusedthroughoutthebook. (VO) VEC1(lRXO,lR),V(t+T,x)=V(t,X) V(t,x)ElRXO, (VI) V(t,x) |