|
|
|
Item Details
Title:
|
INTRODUCTION TO CALCULUS AND ANALYSIS
|
Volume: |
v-2 |
By: |
R. Courant, Fritz John, Albert A. Blank |
Format: |
Paperback |
List price:
|
£72.00 |
We believe that this item is permanently unavailable, and so we cannot source
it.
|
|
|
|
|
ISBN 10: |
1461389607 |
ISBN 13: |
9781461389606 |
Publisher: |
SPRINGER-VERLAG NEW YORK INC. |
Pub. date: |
21 October, 2011 |
Pages: |
979 |
Synopsis: |
The new Chapter 1 contains all the fundamental properties of linear differential forms and their integrals. These prepare the reader for the introduction to higher-order exterior differential forms added to Chapter 3. Also found now in Chapter 3 are a new proof of the implicit function theorem by successive approximations and a discus- sion of numbers of critical points and of indices of vector fields in two dimensions. Extensive additions were made to the fundamental properties of multiple integrals in Chapters 4 and 5. Here one is faced with a familiar difficulty: integrals over a manifold M, defined easily enough by subdividing M into convenient pieces, must be shown to be inde- pendent of the particular subdivision. This is resolved by the sys- tematic use of the family of Jordan measurable sets with its finite intersection property and of partitions of unity. In order to minimize topological complications, only manifolds imbedded smoothly into Euclidean space are considered. The notion of "orientation" of a manifold is studied in the detail needed for the discussion of integrals of exterior differential forms and of their additivity properties.On this basis, proofs are given for the divergence theorem and for Stokes's theorem in n dimensions. To the section on Fourier integrals in Chapter 4 there has been added a discussion of Parseval's identity and of multiple Fourier integrals. |
Illustrations: |
biography |
Publication: |
US |
Imprint: |
Springer-Verlag New York Inc. |
Returns: |
Non-returnable |
|
|
|
|
|
|
|
|
|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.
|
|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.
|
|
|
|