|
|
|
Item Details
Title:
|
MATHEMATISCHE HILFSMITTEL DES INGENIEURS
|
By: |
Gustav Doetsch, F.W. Schafke, H. Tietz |
Format: |
Paperback |
List price:
|
£54.99 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
3642949916 |
ISBN 13: |
9783642949913 |
Publisher: |
SPRINGER-VERLAG BERLIN AND HEIDELBERG GMBH & CO. KG |
Pub. date: |
12 February, 2012 |
Edition: |
Softcover reprint of the original 1st ed. 1967 |
Series: |
Grundlehren der Mathematischen Wissenschaften 139 |
Pages: |
500 |
Synopsis: |
234 Originalvariable x nur ganzzahlige Werte annimmt, dann ist das Integral durch eine unendliche Summe zu ersetzen. Einige der im folgenden behandelten Transformationen gehOren zu diesen beiden Typen. Da wir nUr lineare Transformationen betrachten, wird spiiter die Eigenschaft der Linearitat nicht mehr eigens erwahnt. 2. Der Hilbertsche Raum L2 Bei einer Integraitransformation HiBt man i. aUg. als Original funktionen aUe I (x) zu, fur die das Integral existiert. Manche Eigen schaften der Transformation lassen sich aber nUr dann exakt formu lieren und beweisen, wenn man die I (x) auf engere Raume beschrankt, die durch innere, von der Transformation unabhangige Eigenschaften charakterisiert sind. In dieser Beziehung ist der Raum der quadratisch l integrablen Funktionen am wichtigsten . Dieser laBt sich auffassen als Analogon zu dem Euklidischen Raum Rn von n Dimensionen, in dem sich die Variablen der gew6hnlichen Funktionen bewegen. Der Rn ist dadurch ausgezeichnet, daB in ihm die Distanz zweier Punkte Xl = (Xll', Xl II), X2 = (X21> ., X2 n) als die positive Wurzel aus n d (Xl, X2)2 = (Xl v - X2v)2 . -1 definiert ist. Es liegt nahe, im Raum der in dem endlichen oder unend lichen IntervaU (a, b) definierten Funktionen die Distanz zweier Ele 2 mente 11, 12 durch den entsprechenden Ausdruck b d (11, 12)2 = jill (X) - 12 (X) 12 dx a zu definieren. Insbesondere ist die Distanz einer Funktion I (x) vom NuUpunkt, d. h. |
Illustrations: |
black & white illustrations, bibliography |
Publication: |
Germany |
Imprint: |
Springer-Verlag Berlin and Heidelberg GmbH & Co. K |
Returns: |
Returnable |
|
|
|
|
|
|
|
|
|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.
|
|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.
|
|
|
|