|
|
|
Item Details
Title:
|
METRICAL THEORY OF CONTINUED FRACTIONS
|
By: |
Marius Iosifescu, Cor Kraaikamp |
Format: |
Paperback |
List price:
|
£90.00 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
9048161304 |
ISBN 13: |
9789048161300 |
Publisher: |
SPRINGER |
Pub. date: |
8 December, 2010 |
Edition: |
Softcover reprint of hardcover 1st ed. 2002 |
Series: |
Mathematics and Its Applications 547 |
Pages: |
383 |
Synopsis: |
This monograph is intended to be a complete treatment of the metrical the- ory of the (regular) continued fraction expansion and related representations of real numbers. We have attempted to give the best possible results known so far, with proofs which are the simplest and most direct. The book has had a long gestation period because we first decided to write it in March 1994. This gave us the possibility of essentially improving the initial versions of many parts of it. Even if the two authors are different in style and approach, every effort has been made to hide the differences. Let 0 denote the set of irrationals in I = [0,1]. Define the (reg- ular) continued fraction transformation T by T (w) = fractional part of n 1/w, w E O. Write T for the nth iterate of T, n E N = {O, 1, ... }, n 1 with TO = identity map. The positive integers an(w) = al(T - (W)), n E N+ = {1,2*** }, where al(w) = integer part of 1/w, w E 0, are called the (regular continued fraction) digits of w. Writing . for arbitrary indeterminates Xi, 1 :::; i :::; n, we have w = lim [al(w),*** , an(w)], w E 0, n--->oo thus explaining the name of T. The above equation will be also written as w = lim [al(w), a2(w),***], w E O. |
Illustrations: |
XIX, 383 p. |
Publication: |
Netherlands |
Imprint: |
Springer |
Returns: |
Returnable |
|
|
|
|
|
|
|
|
|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.
|
|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.
|
|
|
|