![](/Images/spacer.gif) |
![](/Images/menu_shadow.gif)
![](/Images/menu_shadow.gif)
|
![](/Images/spacer.gif) |
Item Details
Title:
|
COMPUTATIONAL SYNTHETIC GEOMETRY
|
By: |
Jurgen Bokowski, Bernd Sturmfels |
Format: |
Paperback |
![](/Images/divider_itemdetail_1a.gif)
List price:
|
£22.99 |
We currently do not stock this item, please contact the publisher directly for
further information.
|
|
|
|
|
ISBN 10: |
3540504788 |
ISBN 13: |
9783540504788 |
Publisher: |
SPRINGER-VERLAG BERLIN AND HEIDELBERG GMBH & CO. KG |
Pub. date: |
12 July, 1989 |
Edition: |
1989 ed. |
Series: |
Lecture Notes in Mathematics No. 1355 |
Pages: |
172 |
Description: |
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes and vector geometries from incidence structures. |
Synopsis: |
Computational synthetic geometry deals with methods for realizing abstract geometric objects in concrete vector spaces. This research monograph considers a large class of problems from convexity and discrete geometry including constructing convex polytopes from simplicial complexes, vector geometries from incidence structures and hyperplane arrangements from oriented matroids. It turns out that algorithms for these constructions exist if and only if arbitrary polynomial equations are decidable with respect to the underlying field. Besides such complexity theorems a variety of symbolic algorithms are discussed, and the methods are applied to obtain new mathematical results on convex polytopes, projective configurations and the combinatorics of Grassmann varieties. Finally algebraic varieties characterizing matroids and oriented matroids are introduced providing a new basis for applying computer algebra methods in this field. The necessary background knowledge is reviewed briefly. The text is accessible to students with graduate level background in mathematics, and will serve professional geometers and computer scientists as an introduction and motivation for further research. |
Illustrations: |
biography |
Publication: |
Germany |
Imprint: |
Springer-Verlag Berlin and Heidelberg GmbH & Co. K |
Returns: |
Returnable |
|
|
|
![](/images/spacer.gif) |
![](images/menu_shadow2.gif)
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
Little Worried Caterpillar (PB)
Little Green knows she''s about to make a big change - transformingfrom a caterpillar into a beautiful butterfly. Everyone is VERYexcited! But Little Green is VERY worried. What if being a butterflyisn''t as brilliant as everyone says?Join Little Green as she finds her own path ... with just a littlehelp from her friends.
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
All the Things We Carry PB
What can you carry?A pebble? A teddy? A bright red balloon? A painting you''ve made?A hope or a dream?This gorgeous, reassuring picture book celebrates all the preciousthings we can carry, from toys and treasures to love and hope. With comforting rhymes and fabulous illustrations, this is a warmhug of a picture book.
![](/Images/menu_shadow2left.gif)
|
![](/Images/menu_shadow2left.gif)
|
|
![](/Images/spacer.gif) |